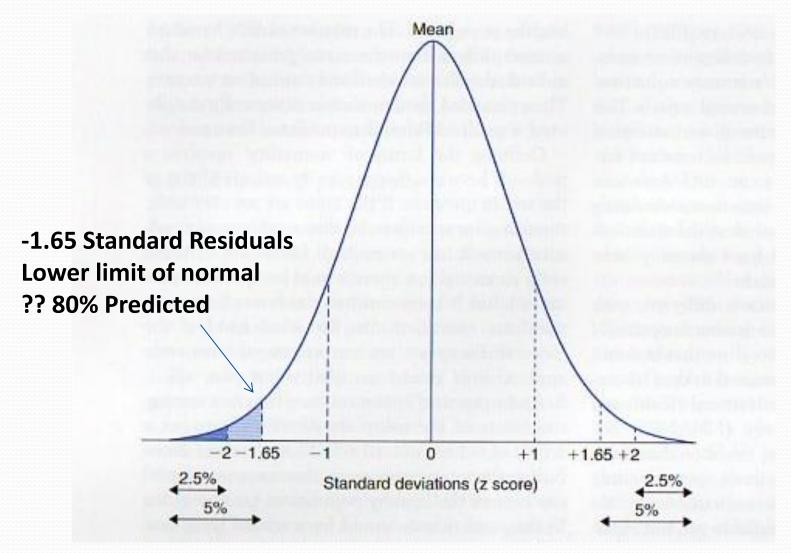
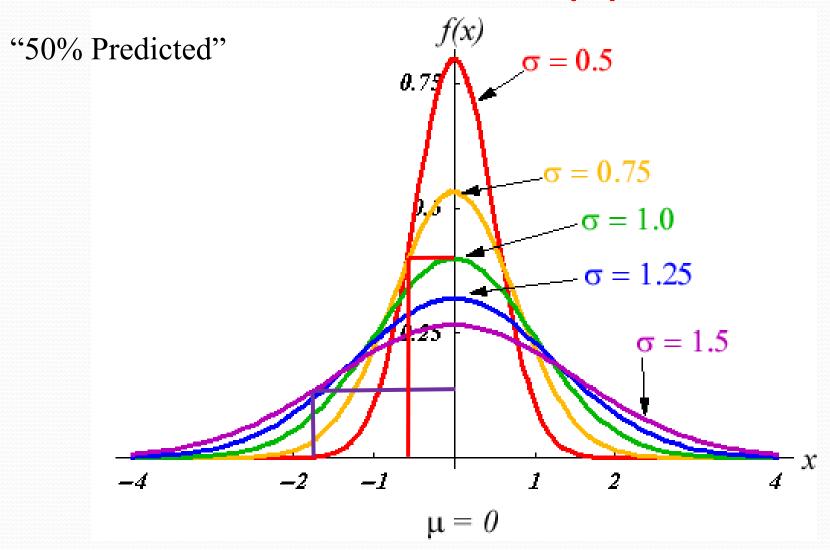
Assessment of Airway Function in Asthma

Mark Mottershaw


Introduction

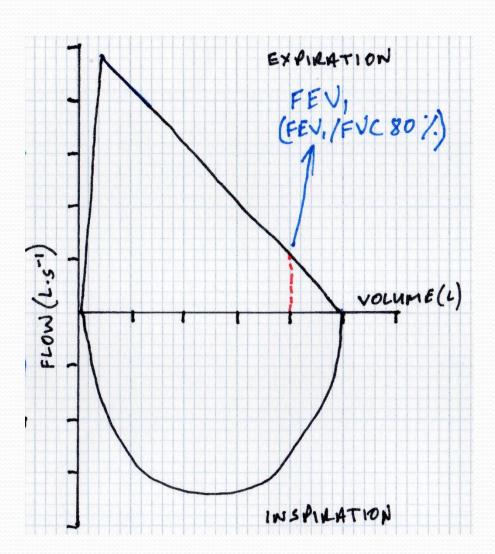
- Guidelines
 - BTS 2016
 - "Confirmation of asthma hinges on demonstration of airflow variability over short periods."
- Understand normal
- Interpret deviations from normal
- Assess results of standard interventions
- Awareness of alternatives


Expressing Normality

- Percent Predicted
- Lower limit of normal (LLN)
- Standard Residual

Normal Distribution

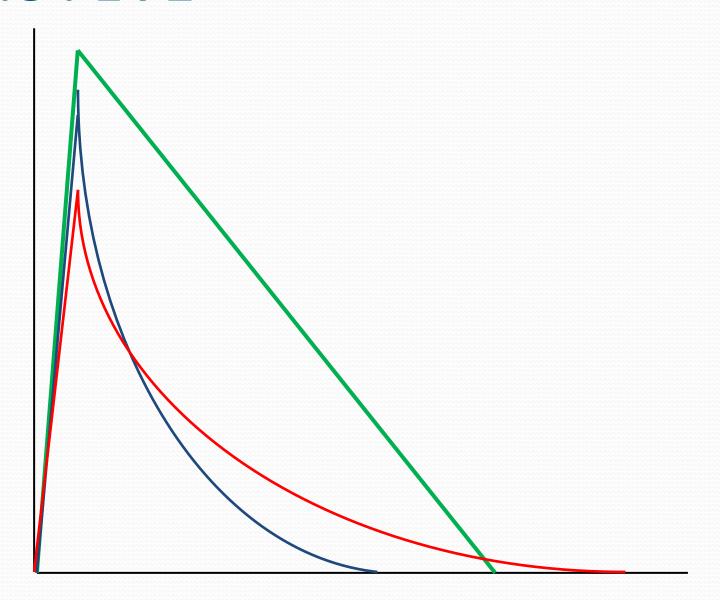
Normal Distribution(s)


Standard Residual

- The number of standard deviations (Z scores) from the population mean.
- Applicable to all lung function indices

Standard Residual (SR)	Severity
> -1.65	Normal
- 1.65 to -2.50	Mild
- 2.50 to - 3.50	Moderate
< -3.50	Severe

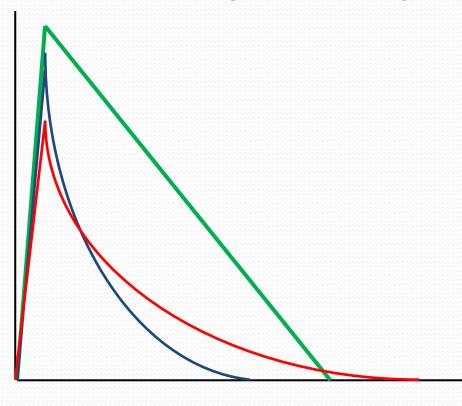
Airway Indices


- PEF
- FEV₁
- FEV1 Ratio, FEV1/FVC
- "Mid expiratory flows"

The FEV1

- Predominance and Pre-eminence in medical education
- Misleading
 - Reduced in restriction
 - Often "normal" with hyperinflation
- Still recommended to determine severity in COPD
 - Equally misleading
- Learn to hate it

The FEV1


The FEV1

- Predominance and Pre-eminence in medical education
- Misleading
 - Reduced in restriction
 - Often "normal" with hyperinflation
- Still recommended to determine severity in COPD
 - Equally misleading

Severity

Post Bronchodilat or FEV ₁ Ratio	FEV ₁ % Predicted	NICE Clinical Guideline GOLD 2008 (2010)		ATS/ERS 2004	Standard Residual (SR)
> 0.7	> 80%	Normal	Normal	Normal	> - 1.65
< 0.7	≥ 80%	Stage 1 – Mild*	Stage 1 – Mild	Mild	- 1.65 to - 2.50
< 0.7	50 – 79%	Stage 2 – Moderate	Stage 2 – Moderate	Moderate	- 2.50 to - 3.50
< 0.7	30 – 49%	Stage 3 – Severe	Stage 3 – Severe	Severe	< -3.50
< 0.7	< 30%	Stage 4 – Very Severe**	Stage 4 – Very Severe**	Very Severe	-

Severity Interpretation

- FEV1 2.57 (69% pred)
- FVC 3.73 (81% pred)
- Ratio 69% (pred is 78%)
- Moderate obstruction
- FEV1 3.00 (81% pred)
- FVC 6.22 (135% pred)
- Ratio 48% (pred is 78%)
- Mild Obstruction

The FEV1 Ratio

- Primary index of airflow limitation in spirometry
- Normal Value?

FEV1 Ratio

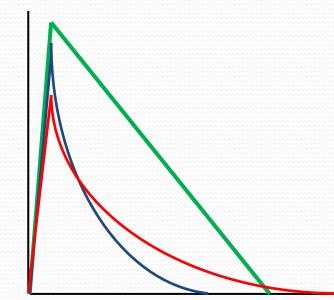
- 80 year old male, height 1.78m
- Reference FEV1 Ratio 71%
 - LLN ~ 60%

Parameter	Value	Reference Value	% Predicted	Standard Residual
FEV1 (L)	2.16	2.61	83	-0.89
FVC (L)	3.62	3.62	100	-0.01
FEV1 Ratio	60	71	84	-1.63

FEV1 Ratio

- 18 year old female, height 1.78m
- Reference FEV1 Ratio 86%
 - LLN 75%

Parameter	Value	Reference Value	% Predicted	Standard Residual
FEV1(L)	2.73	3.98	69	-3.29
FVC (L)	4.53	4.53	100	0.00
FEV1 Ratio	60	86	70	-3.90

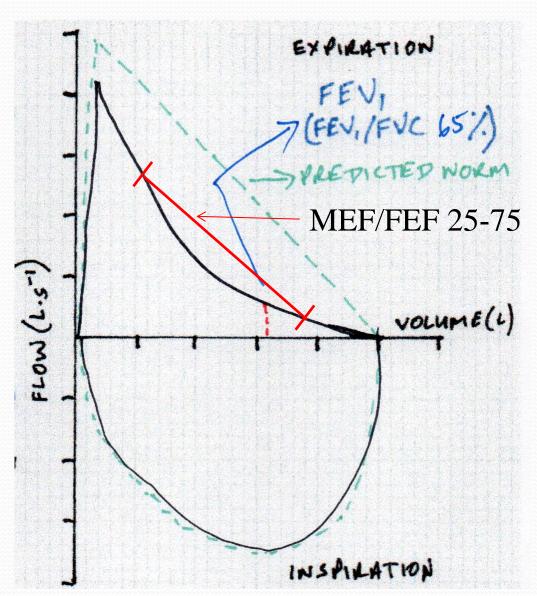

Severity Interpretation Using FEV1 Ratio

7.17

- FEV1 2.57 (69% pred)
- FVC 3.73 (81% pred)
- Ratio 69% (pred is 78%)
- Moderate obstruction
- FEV1 3.00 (81% pred)
- FVC 6.22 (135% pred)
- Ratio 48% (pred is 78%)
- Mild Obstruction

SR = <u>Measured – Predicted</u> Residual Standard Deviation (7.17)

$$48 - 78 = -4.18$$
 (Severe Obstruction)

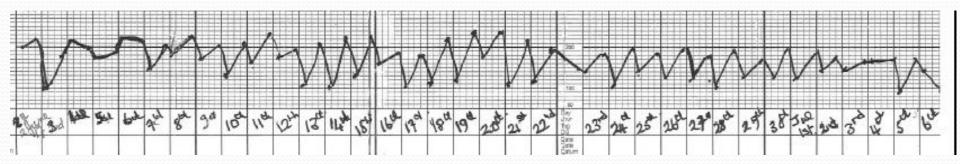


Spirometry Interpretation

Spirometry	FVC	FEV ₁ Ratio
Normal	> LLN (⇔)	> LLN (⇔)
Obstructive	> LLN (⇔)	< LLN / SR (♥)
? Restrictive	< LLN (↓)	> LLN (⇔)
Combined	< LLN (♣)	< LLN (♣)

Mid Expiratory Flows

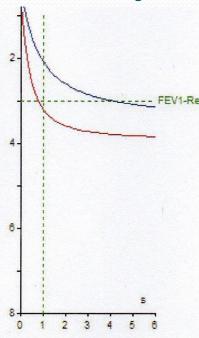
- Smaller airway function
- Different units
- Wider variation
- Interpret cautiously

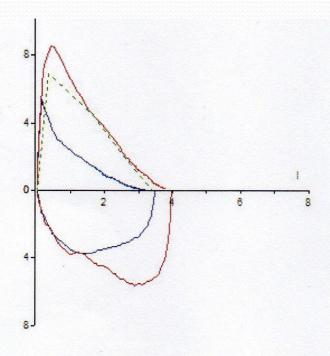

PEF

- Variability and diurnal variation
- Variability > 10% suggestive of abnormality and suboptimal control with BD measurements

Highest PEF – Lowest PEF x 100 Mean of highest+ Lowest PEF

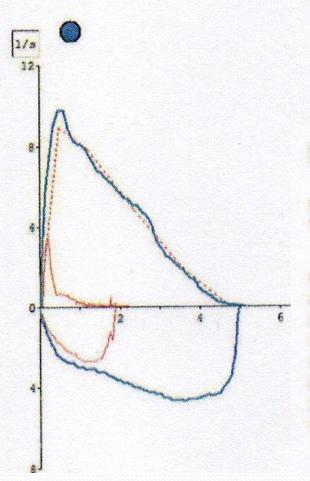
Visual diurnal variation


PEF diurnal variation



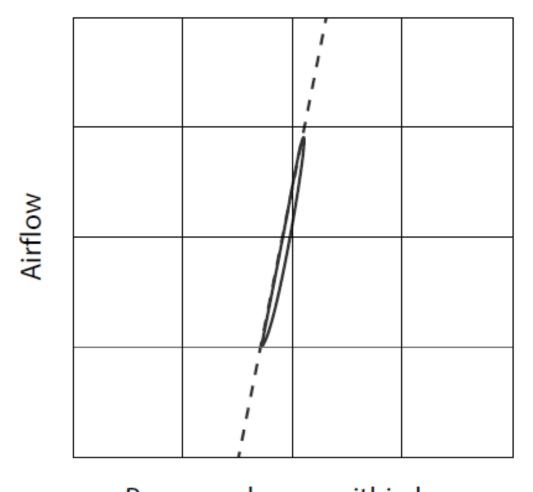
Reversibility

- Spirometry and change in FEV1 still considered gold standard for assessing reversibility
- 200 ml AND 12% Increase in FEV1

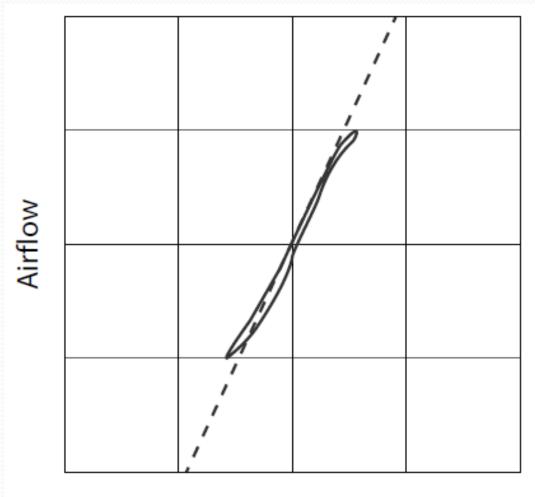

Reversibility

		14:51		15:24		
unit	pred.	pre	%pred.	post	%pred.	post%pre
1 .	3.46	3.28	95	3.93	114	20
	3.01	2.08	69	3.23	107	55
%		60		82		37
%		63		82		29
l/min	411	320	78	511	124	60
l/s	6.03	2.69	44	6.67	110	148
l/s	5.23	1.76	34	4.56	87	158
l/s	2.05	0.54	26	1.33	65	146
l/min	235	74	31	190	81	157
	 % % /min /s /s	I 3.46 I 3.01 % % I/min 411 I/s 6.03 I/s 5.23 I/s 2.05	unit pred. pre 1 3.46 3.28 1 3.01 2.08 % 60 % 63 I/min 411 320 I/s 6.03 2.69 I/s 5.23 1.76 I/s 2.05 0.54	unit pred. pre %pred. 3.46 3.28 95 3.01 2.08 69 60 63 /min 411 320 78 /s 6.03 2.69 44 /s 5.23 1.76 34 /s 2.05 0.54 26	unit pred. pre %pred. post I 3.46 3.28 95 3.93 I 3.01 2.08 69 3.23 % 60 82 % 63 82 I/min 411 320 78 511 I/s 6.03 2.69 44 6.67 I/s 5.23 1.76 34 4.56 I/s 2.05 0.54 26 1.33	unit pred. pre %pred. post %pred. I 3.46 3.28 95 3.93 114 I 3.01 2.08 69 3.23 107 % 60 82 % 63 82 I/min 411 320 78 511 124 I/s 6.03 2.69 44 6.67 110 I/s 5.23 1.76 34 4.56 87 I/s 2.05 0.54 26 1.33 65

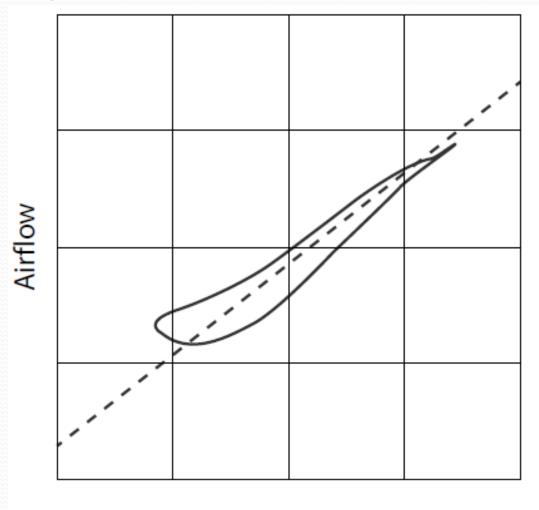
Reversibility


Parameter

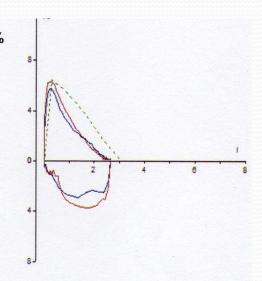
FEV1 FVCex FEV1/FVC FEV1/IVC PEF MEF25 MEF80 MEF75


%Ref	
64%	
24%	
40%	
189%	
4%	
4%	
9%	
	39% 8% 4%

ı	Effort 1	
		%Ref
0	4,41	69%
	4,59	
	3.98	106%
	5.08	107%
	78	
	90	
	589	109%
	84	71%
	288	99%
	445	94%
*	0.08	
-	10.1	


- One of few indices where value greater than average suggests pathology
- May suggest airway disease with normal spirometry

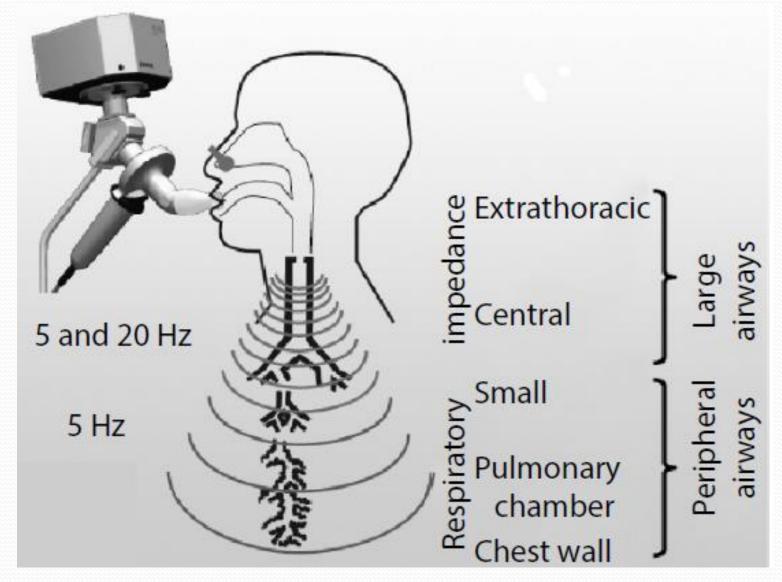
Pressure change within box



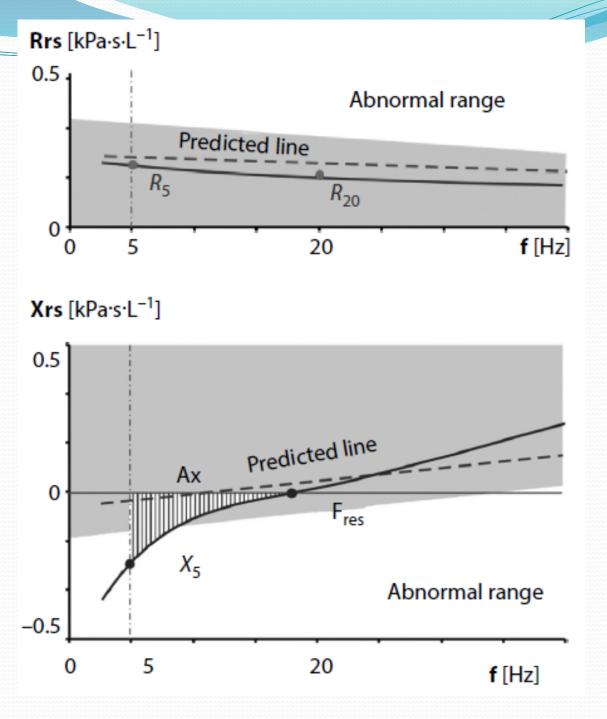
Pressure change within box

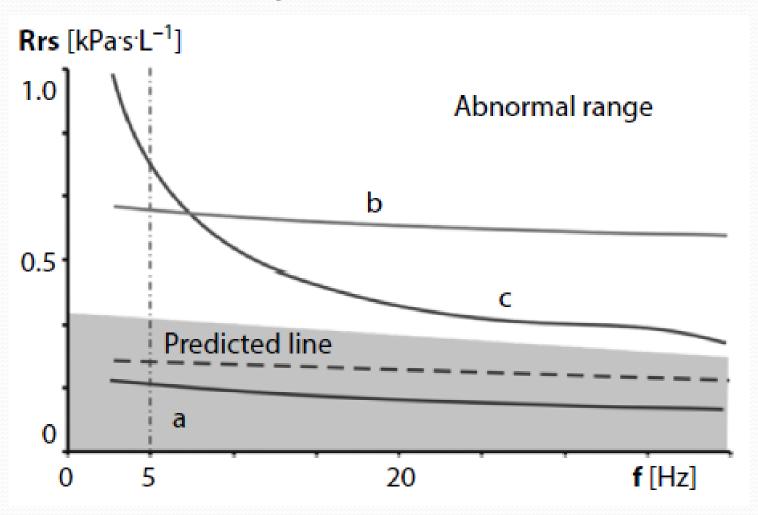
Pressure change within box

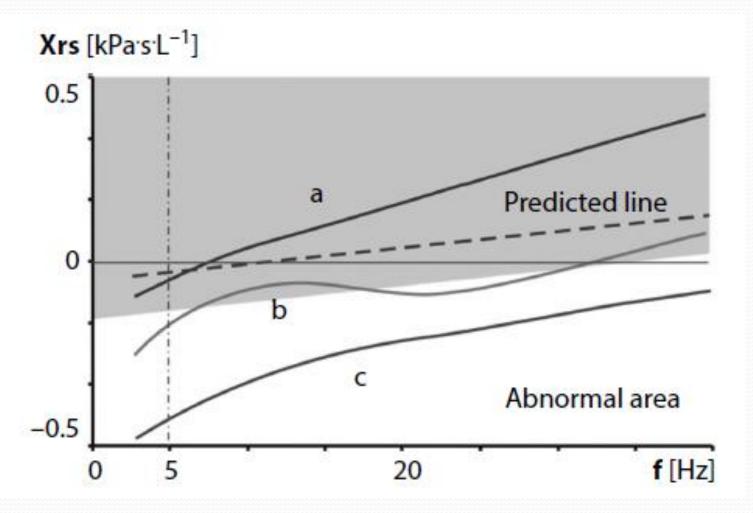
PARAMETER	UNIT	PRED.	PRE	%PRED.	SR	POST	%PRED.	SR	POST%
FEV1	- 1	2.65	2.21	83	-1.16	2.18	82	-1.24	-1
FVCex	1	3.08	2.81	91	-0.63	2.68	87	-0.92	-4
FEV1/FVC	%		79			81			3
VC	1	3.05	2.67	88	-0.89	2.70	89	-0.83	1
FEV1/IVC	%		83			81			-2
PEF	I/min	383	345	90	-0.70	376	98	-0.14	9
FIV1	1	2.73	2.44	89		2.48	91		2
FVCin	-1	3.05	2.65	87	-0.96	2.66	87	-0.91	1
PIF	I/min	258	175	68	-1.51	223	86	-0.64	28



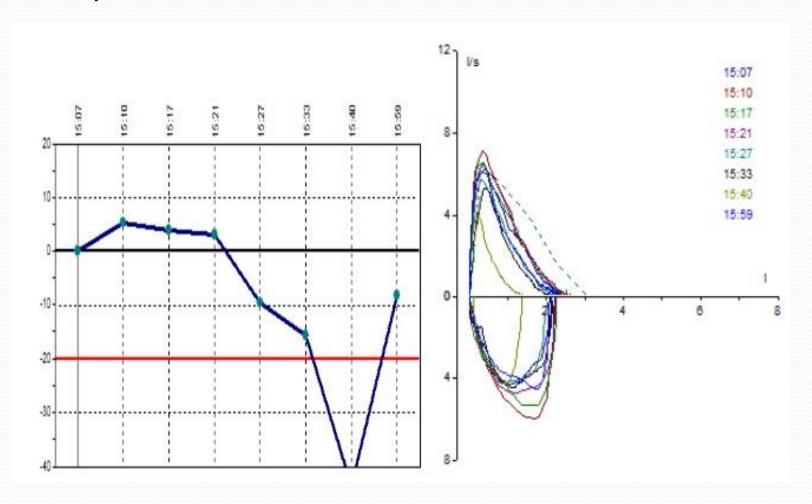
Body Plethysmography


LUNG VOLUMES AND SUBDIVISIONS


PARAMETER	UNIT	PRED.	PRE	%PRED.	SR	POST	%PRED.	SR	POST% PRE
TLC	1	4.57	3.75	82	-1.38	3.93	86	-1.08	5
RV	- 1	1.45	0.94	65	-1.45	1.18	81	-0.78	25
VC	1	3.05	2.67	88	-0.89	2.70	89	-0.83	1
TGV	- 1	2.55	1.65	65	-1.80	1.99	78	-1.13	20
TGV/TLC	%	51	44	86	-0.72	51	99	-0.05	15
RV/TLC	%	32	25	79	-1.16	30	94	-0.33	19
RESISTANCE									
	Pa/(I/s) kPa*s	0.30 0.77	0.95 1.58	318 206		0.25 0.49	82 64		-74 -69



Abbreviation	Parameter
R_5	Resistance (5 Hz)
R ₂₀	Resistance (20 Hz)
$R_5 - R_{20}$	Resistance (5–20 Hz)
X_5	Reactance (5 Hz)
Ax	Reactance area
F _{res}	Resonant frequency



Other tests

- Challenge test
- Lung Clearance Index (LCI)
 - Time to washout inert gas
 - Index of obstruction
 - ? Different patterns with different airway involvement
- Capnography
 - Altered waveforms in normal, asthma and COPD

Challenge Test

PC/PD20

Other tests

- Challenge testing
- Lung Clearance Index (LCI)
 - Time to washout inert gas
 - Index of obstruction
 - ? Different patterns with different airway involvement
- Capnography
 - Altered waveforms in normal, asthma and COPD

Conclusions

- Assessment of airway function and changes over short periods important for confirmation of asthma diagnosis
- Accurate assessment depends on understanding normal values, expressions of normality and interpretative strategies
- Spirometry is still gold standard for assessing changes in airway function
- Tidal breathing assessment becoming more clinically available with complementary utility.